Melengkapkankuadrat sempurna menyelesaikan persamaan kuadrat dengan melengkapkan kuadrat sempurna. D = k 2, dengan k 2 = bilangan kuadrat sempurna kedua akar rasional. Memfaktorkan bentuk x 2 + bx + c. Bentuk umum persamaan kuadrat : Berikut ini data tentang ukuran sepatu dari 13 siswa kelas viii.36 39 37 39 37 40 38 40 39 38 40 39 38nilai Langkah-langkah mencari penyelesaian dari persamaan adalah sebagai berikut. Koefisien adalah 1, atau dibuat menjadi 1. Persamaan dinyatakan dalam . Kedua ruas persamaan ditambah dengan kuadrat dari . Persamaan dinyatakan dalam bentuk . Menggunakan langkah-langkah di atas akan dicari penyelesaian dari persamaan . Koefisien adalah 3 maka terlebih dahulu dibuat agar koefisieannya 1 yaitu dengan membagi kedua ruas dengan 3 sehingga diperoleh Selanjutnya persamaan dinyatakan dalam bentuk yaitu Karena koefisien dari adalah , sehingga kedua ruas ditambah dengan . Ruas kiri dinyatakan sebagai kuadrat sempuna, kemudian gunakan sifat jika , maka , sehingga diperoleh Jadi, penyelesaiannya adalah dan .

Selesaikanpersamaan kuadrat berikut dengan cara melengkapkan kuadrat sempurna : x 2 - x - 12 = 0; x 2 - 2x - 8 = 0; 2x 2 - 6x + 3 = 0; 3x 2 = 4x + 6; Selesaikan persamaan kuadrat berikut dengan menggunakan rumus abc : x 2 - 5x - 9 = 0; 2x 2 + 5x - 12 = 0; 3x 2 - 8x - 3 = 0; 6 - 3x - 2x 2 = 0; 4x 2 - 5ax + a 2 = 0

Matematika Dasar » Persamaan Polinomial › Mencari Akar-akar Persamaan Kuadrat dengan Melengkapkan Kuadrat Sempurna Persamaan Kuadrat Prinsip dari metode melengkapkan kuadrat sempurna dalam menentukan akar-akar persamaan kuadrat adalah memanipulasi persamaan kuadrat secara aljabar sehingga menjadi bentuk kuadrat sempurna. Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Pada artikel sebelumnya, kita telah membahas cara mencari akar-akar persamaan kuadrat dengan pemfaktoran. Beberapa di antara kalian pasti telah menyadari bahwa kita tidak selalu bisa mencari akar-akar persamaan kuadrat dengan cara demikian. Dengan kata lain, terkadang kita akan menjumpai bentuk persamaan kuadrat yang tidak memungkinkan kita untuk mencari akar-akarnya dengan pemfaktoran atau bentuk persamaan kuadrat tersebut sangat sulit dipecah ke dalam perkalian faktor-faktornya. Sebagai contoh, sangat sukar mencari akar-akar persamaan kuadrat \x^2-10x+1=0\ dengan cara pemfaktoran karena faktor-faktor dari persamaan tersebut merupakan bilangan irasional. Kita dapat mengatasi masalah mencari akar-akar persamaan kuadrat ini dengan alternatif lain yakni dengan cara melengkapkan kuadrat sempurna cara lainnya bisa gunakan rumus abc. Prinsip dari metode ini adalah memanipulasi secara aljabar persamaan kuadrat sehingga menjadi bentuk kuadrat sempurna. Penyelesaian persamaan kuadrat dengan melengkapkan kuadrat menggunakan rumus berikut. Ubahlah sehingga menjadi bentuk Untuk memanipulasi persamaan kuadrat sehingga menjadi bentuk di atas, kita dapat menggunakan rumus berikut Setelah diperoleh bentuk \ x+p^2 = q \, tentukanlah akar-akarnya dengan cara sebagai berikut Berikut adalah langkah-langkah untuk mencari akar-akar persaman kuadrat \ax^2+bx+c=0\ dengan cara melengkapkan kuadrat sempurna Pindahkan konstanta \c\ dari ruas kiri ke ruas kanan persamaan. Bagi kedua ruas persamaan dengan \a\ koefisien suku \x^2\. Hitunglah \\left\frac{1}{2} \cdot -\frac{b}{a}\right^2\ dan jumlahkan kedua ruas dengan hasilnya. Faktorkan ruas kiri sebagai kuadrat binomial; kemudian sederhanakan ruas kanan. Selesaikan dengan menggunakan sifat akar kuadrat dari suatu persamaan. Contoh Soal dan Pembahasan Perhatikan beberapa contoh berikut ini. Contoh 1 Dengan menggunakan cara melengkapkan kuadrat sempurna, carilah akar-akar persamaan kuadrat \x^2-10x+1=0\. Pembahasan Pertama, kita memindahkan nilai \c = 1\ ke ruas kanan persamaan, kemudian membagi kedua ruas persamaan dengan \a = 1\. Karena pembagian dengan 1 tidak mengubah apapun, kita peroleh hasil berikut. Selanjutnya, hitunglah \\left1/2 ⋅ -\frac{b}{a}\right^2\, yaitu Jumlahkan kedua ruas dengan hasil yang diperoleh di atas, sehingga Dengan demikian, kita peroleh Jadi, akar-akar dari persamaan kuadrat tersebut yaitu \ x_1 = 5 + 2\sqrt{6} \ dan \ x_2 = 5 - 2\sqrt{6} \. Contoh 2 Tentukan akar-akar persamaan kuadrat \ 2x^2 - 5 x + 3 = 0 \ dengan cara melengkapkan kuadrat sempurna. Pembahasan Pertama, kita memindahkan nilai \c = 3\ ke ruas kanan persamaan, kemudian membagi kedua ruas persamaan dengan \a = 2\. Kita peroleh hasil berikut. Selanjutnya, hitunglah \\left1/2 ⋅ -\frac{b}{a}\right^2\, yaitu Jumlahkan kedua ruas dengan hasil yang diperoleh di atas, sehingga Dengan demikian, kita peroleh Jadi, akar-akar dari persamaan kuadrat tersebut yaitu \ x_1 = 6/4 \ dan \ x_2 = 1 \. Cukup sekian pembahasan mengenai cara mencari akar-akar suatu persamaan kuadrat dengan melengkapkan kuadrat sempurna dalam artikel ini. Terima kasih telah membaca sampai selesai. Jika Anda merasa artikel ini bermanfaat, boleh dibantu share ke teman-temannya, supaya mereka juga bisa belajar dari artikel ini. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.
HitungSolusi Akar Persamaan x²+6x+16=0 dengan Melengkapi Kuadrat Sempurna! Penyelesaian: Sehingga dapat dihitung solusi akar-akarnya, sebagai berikut. Solusi persamaan tersebut merupakan solusi kompleks, karena perhitungannya terdapat akar kuadrat negatif yang menghasilkan nilai imajiner.
Langkah-langkah mencari penyelesaian dari persamaan adalah sebagai berikut. Koefisien adalah 1, atau dibuat menjadi 1. Persamaan dinyatakan dalam . Kedua ruas persamaan ditambah dengan kuadrat dari . Persamaan dinyatakan dalam bentuk . Menggunakan langkah-langkah di atas akan dicari penyelesaian dari persamaan . Koefisien adalah 1 sehingga selanjutnya persamaan dinyatakan dalam bentuk yaitu Karena koefisien dari adalah 12, sehingga kedua ruas ditambah dengan . Ruas kiri dinyatakan sebagai kuadrat sempuna, kemudian gunakan sifat jika , maka , sehingga diperoleh Jadi, penyelesaiannya adalah .
Langkahlangkah mencari penyelesaian dari persamaan adalah sebagai berikut. Koefisien adalah 1, atau dibuat menjadi 1. Persamaan dinyatakan dalam . Kedua ruas persamaan ditambah dengan kuadrat dari . Persamaan dinyatakan dalam bentuk . Menggunakan langkah-langkah di atas akan dicari penyelesaian dari persamaan .
Melengkapi kuadrat sempurna adalah metode yang digunakan untuk mengubah konversi bentuk persamaan kuadrat ax² + bx + c = 0 ke bentuk kuadrat sempurna ax + d² + e = 0. Metode melengkapi kuadrat sempurna juga disebut dengan metode "completing the square". Berikut rumus metode melengkapi kuadrat sempurna. Navigasi Cepat A. Rumus Melengkapi Kuadrat Sempurna dan Solusi Akar B. Pendekatan Geometri Kuadrat Sempurna C. Contoh Soal Melengkapi Kuadrat Sempurna dan Solusinya Contoh 1. x²+6x+8=0 solusi bulat Contoh 2. x²+7x+6=0 solusi bulat Contoh 3. 4x²+4x+1=0 solusi tunggal Contoh 4. x²+6x+16=0 solusi kompleks Contoh 5. 2x²+5x+3=0 solusi desimal B. Pendekatan Geometri Kuadrat Sempurna Kuadrat sempurna adalah bentuk persamaan kuadrat yang hanya terdiri dari bentuk kuadrat dan sebuah konstanta. Metode menyempurnakan kuadrat sempurna mengubah bentuk umum persamaan kuadrat ax² + bx + c = 0 menjadi bentuk kuadrat ax + d² dan diseimbangkan dengan konstanta e, menjadi ax + d² + e = 0. Nilai konstanta e merupakan nilai keseimbangan equilibrium terhadap bentuk persamaan kuadrat yang diubah ke dalam bentuk sempurna. Baca juga Materi Persamaan Kuadrat, Bentuk, dan Rumus Metode menyempurnakan kuadrat sempurna digambarkan secara geometri untuk menyeimbangkan bentuk kuadrat dengan persamaan kuadrat yang dikonversi. Bentuk umum persamaan kuadrat dapat digambarkan secara geometri sebagai persegi dan persegi panjang. Bentuk persegi melambangkan bentuk kuadrat dari suatu nilai, koefisien, atau variabel. Berikut ilustrasi geometri oleh Lucas Vieira 2013 untuk bentuk umum persamaan kuadrat ke bentuk kuadrat sempurna. Nilai setiap suku dibagi dengan koefisien a, sehingga terbentuk bangun persegi dari suku ax² yaitu ax²/a = x². Koefisien variabel x dapat dibagi menjadi dua, hasil yang diperoleh berupa dua buah persegi panjang dengan ukuran sisi x dan b/2a. Sehingga dapat dilakukan penggabungan di langkah selanjutnya. Tiap potongan yang telah dibagi, digabungkan dengan persegi x², sehingga ukurannya pas di sisi kiri dan bawah. Diperlukan dua selisih nilai yang berlawan untuk membentuk sebuah bangun kuadrat dari gabungan di atas. Pertama, nilai yang memenuhi bentuk bangun gabungan sehingga menjadi bentuk kuadrat yaitu b/2a². Kedua, untuk menyeimbangkan persamaan harus dikurangkan dengan nilai tersebut yaitu -b/2a². Sehingga bentuk persegi tersebut dapat formulasikan dalam bentuk kuadrat berikut. Dapat disederhanakan menjadi bentuk berikut Langkah sebelumnya yaitu membagi persamaan dengan a. Sekarang kembalikan nilai a tersebut sehingga mencerminkan bentuk persamaan yang sebenarnya dengan mengalikan setiap suku dengan a. Sehingga diperoleh C. Contoh Soal Solusi Akar dengan Melengkapi Kuadrat Sempurna Berikut beberapa contoh soal mencari solusi akar-akar persamaan kuadrat dengan cara melengkapi kuadrat sempurna. Contoh 1. Hitung Solusi Akar Persamaan x²+6x+8=0 dengan Melengkapi Kuadrat Sempurna! Penyelesaian Sehingga dapat dihitung solusi akar-akarnya, sebagai berikut. ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 8 = 0 adalah x1 = -2 dan x2 = -4. Contoh 2. Hitung Solusi Akar Persamaan x²+7x+6=0 dengan Melengkapi Kuadrat Sempurna! Penyelesaian Sehingga dapat dihitung solusi akar-akarnya, sebagai berikut. ∴ Jadi, akar-akar persamaan kuadrat dari x² + 7x + 6 = 0 adalah x1 = -1 dan x2 = -6. Contoh 3. Hitung Solusi Akar Persamaan 4x²+4x+1=0 dengan Melengkapi Kuadrat Sempurna! Penyelesaian Sehingga dapat dihitung solusi akar-akarnya, sebagai berikut. ∴ Jadi, akar-akar persamaan kuadrat dari 4x² + 4x + 1 = 0 adalah x1,2 = -1/2. Solusi ini juga disebut solusi tunggal karena titik potong x1 dan x2 mempunyai nilai sama. Contoh 4. Hitung Solusi Akar Persamaan x²+6x+16=0 dengan Melengkapi Kuadrat Sempurna! Penyelesaian Sehingga dapat dihitung solusi akar-akarnya, sebagai berikut. Solusi persamaan tersebut merupakan solusi kompleks, karena perhitungannya terdapat akar kuadrat negatif yang menghasilkan nilai imajiner. ∴ Jadi, akar-akar persamaan kuadrat dari x² + 6x + 16 = 0 adalah x1 = 2,64i - 3 dan x2 = -2,64i - 3. Contoh 5. Hitung Solusi Akar Persamaan 2x²+5x+3=0 dengan Melengkapi Kuadrat Sempurna! Penyelesaian Kemudian dapat dihitung akar-akar persamaannya dari bentuk kuadrat sempurna di atas ∴ Jadi, akar-akar persamaan dari 2x² + 5x + 3 = 0 adalah x1 = -1 dan x2 = -3/2. Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Melengkapi Kuadrat Sempurna, Solusi Akar, dan Contoh Soal". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih...
Melengkapkanbentuk kuadrat sempurna 3. Menggunakan rumus kuadrat 1. Memfaktorkan Contoh: Selesaikan persamaan kuadrat berikut ini! a. x2 9 = 0 b. x 2 + 3x = 2 = 0 c. 2 x 2 x 1 = 0 Jawab: a. x2 9 = 0 Rumus kuadrat diperoleh dengan proses melengkapkan kuadrat sempurna untuk persamaan kuadrat ax 2 + bx + c = 0 . c. Jenis akar-akar
terjawab • terverifikasi oleh ahli 4x^2 - x - 7 = 04x^2 - x = 74x^2 - 1/4x = 7x^2 - 1/4x = 7/4x^2 - 1/4x + 1/64 = 7/4 + 1/64x - 1/8^2 = 113/64x - 1/8 = ±√113/8x = ± √113/8 + 1/8x = 1 + √113/8 atau 1 - √113/8 Adatiga cara yang sering digunakan dalam menentukan akar-akar persamaan kuadrat, yaitu dengan pemfaktoran, melengkapkan bentuk kuadrat sempurna, dan rumus abc. Dalam tulisan ini, kita akan mempelajari cara yang kedua, yaitu dengan melengkapkan kuadrat sempurna. Contoh menyelesaikan persamaan kuadrat dengan metode melengkapkan kuadrat sempurna. Metode pemfaktoran dan penggunaan rumus abc telah dipelajari pada tulisan terdahulu matematika kelas 10 SMA. Sebelumnya diingat lagi dua rumus aljabar berikut ini a + b2 = a2 + 2ab + b2 a − b2 = a2 − 2ab + b2 Misalnya jika x + 32 akan menghasilkan bentuk x2 + 6x + 9 atau x2 + 6x + 9 akan sama dengan x + 32 Sebagai gambaran awal diberikan soal untuk diselesaikan dengan cara melengkapkan kuadrat sempurna x2 + 6x + 5 = 0 Soal ini mirip dengan bentuk kuadrat sempurna yang sudah kita kenal pada pendahuluan di atas yaitu x2 + 6x + 9 Modif sedikit biar muncul bentuk tersebut seperti ini x2 + 6x + 5 = 0 Pindahkan 5 ke ruas kanan dulu x2 + 6x = − 5 Tambahkan suatu angka diruas kiri agar menjadi bentuk kuadrat sempurna, kebetulan kita sudah tahu bahwa angka yang harus ditambahkan adalah angka 9, jika sebelumnya belum tau, maka dapatnya angka 9 adalah dari separuhnya 6 yang dikuadratkan. 3 kuadrat Tambah 9 di ruas kiri, berarti ruas kanan juga harus di tambah 9 x2 + 6x + 9 = − 5 + 9 x2 + 6x + 9 = 4 Ruas kiri kembalikan ke bentuk asalnya x + 32 = 4 ruas kiri diakarkan hingga hilang kuadratnya, demikian juga ruas kanan harus di akarkan. x + 3 = √4 Akar 4 bukan hanya 2, tetapi juga −2 sehingga x + 3 = ± 2 Saatnya penyelesaian x + 3 = 2 x = 2 − 3 x = − 1 atau x + 3 = − 2 x = − 2 − 3 x = − 5 Jadi x = − 1 atau x = − 5 Untuk model soal pilihan ganda kadang lebih cepat dan efektif gunakan pemfaktoran saja. Contoh berikutnya Soal No. 1 Tentukan akar-akar persamaan kuadrat berikut dengan cara melengkapkan kuadrat sempurna x2 + 8x − 9 = 0 Pembahasan Cari angka yang akan ditambahkan lebih dulu 8x → separuhnya 8 adalah 4, angka yang akan ditambahkan adalah 42 = 16 Sehingga x2 + 8x − 9 = 0 x2 + 8x = 9 x2 + 8x + 16 = 9 + 16 x2 + 8x + 16 = 25 x + 42 = 25 x + 4 = √ 25 x + 4 = ± 5 x + 4 = 5 x = 1 atau x + 4 = − 5 x = − 9 Soal No. 2 Tentukan akar-akar persamaan kuadrat berikut dengan melengkapkan kuadrat sempurna x2 − 6x + 8 = 0 Pembahasan Cari angka yang akan ditambahkan lebih dulu − 6x → separuhnya − 6 adalah −3, angka yang akan ditambahkan adalah −32 = 9 Sehingga x2 − 6x + 8 = 0 x2 − 6x = − 8 x2 − 6x + 9 = − 8 + 9 x2 − 6x + 9 = 1 x − 32 = 1 x − 3 = √1 x − 3 = ±1 x − 3 = 1 x = 4 atau x − 3 = − 1 x = 2 Soal No. 3 Tentukan akar-akar persamaan kuadrat berikut dengan melengkapkan kuadrat sempurna 2 x2 − 5x + 3 = 0 Pembahasan Bagi 2 lebih dahulu hingga persamaannya menjadi x2 − 5/2 x + 3/2 = 0 Cari angka yang akan ditambahkan lebih dulu − 5/2 x → separuhnya − 5/2 adalah − 5/4, angka yang akan ditambahkan adalah − 5/42 = 25/16 Sehingga x2 − 5/2 x + 3/2 = 0 x2 − 5/2 x = − 3/2 x2 − 5/2 x + 25/16 = − 3/2 + 25/16 x2 − 5/2 x + 25/16 = − 24/16 + 25/16 x2 − 5/2 x + 25/16 = 1/16 x − 5/42 = √1/16 x − 5/4 = ± 1/4 x − 5/4 = 1/4 x = 1/4 + 5/4 = 6/4 = 3/2 atau x − 5/4 = − 1/4 x = − 1/4 + 5/4 = 4/4 = 1 GK4Dyou.
  • ap5zrx2ebo.pages.dev/384
  • ap5zrx2ebo.pages.dev/89
  • ap5zrx2ebo.pages.dev/302
  • ap5zrx2ebo.pages.dev/531
  • ap5zrx2ebo.pages.dev/88
  • ap5zrx2ebo.pages.dev/310
  • ap5zrx2ebo.pages.dev/220
  • ap5zrx2ebo.pages.dev/82
  • selesaikan persamaan kuadrat berikut dengan melengkapkan kuadrat sempurna